Top 5 SaaS Data Breaches

February 28, 2024 at 8:00 am by Amanda Canale

As of 2023, 45% of businesses have dealt with cloud-based data breaches, which has risen five percent from the previous year. Data breaches have increased with the advancement of cloud-based platforms and software as a service (SaaS). These services offer flexibility to access an absurd number of services on the internet rather than install ones individually. Although this is an incredible technological advancement, there are high-risk factors with data privacy that arise. Information can easily be shared between cloud services, meaning companies must protect their sensitive information at all costs. With the increase in the use of SaaS applications, there are security measures that should be taken to prevent data leaks from happening.

Here’s a rundown of well-known SaaS companies that have experienced significant data breaches and security measures to help prevent similar incidents from affecting you.

Facebook

Facebook has faced multiple data breaches over the last decade, with their most recent one in 2019, affecting over 530 million users. Facebook failed to notify these individual users of their data being stolen. Phone numbers, full names, locations, email addresses, and other user profile information were posted to a public database. Although financial information, health information, and passwords were not leaked, there is still a rise in security concerns from Facebook’s users.

Malicious actors used the contract importer to scrape data from people’s profiles. This feature was created to help users connect with people in their contact list but had security gaps which led actors to access information on public profiles. Security changes were put in place in 2019, but these actors had been able to access the information prior.

When adding personal information to profiles or online services, individuals need to be conscious of the level of detail they disclose as it can be personally identifying.

Microsoft

In 2021, 30,000 US companies and up to 60,000 worldwide companies total were affected by a cyberattack on Microsoft Exchange email servers. These hackers gained access to emails ranging from small businesses to local governments.

Again in 2023, a Chinese attack hit Microsoft’s cloud platform, affecting 25 organizations. These hackers forged authentication to access email accounts and personal information.

Constructive backup plans are crucial for a smooth recovery after a data breach occurs. Microsoft constantly updates its security measures, prioritizing email, file-sharing platforms, and SaaS apps. These cyberattacks are eye-opening for how escalated the situation can become. Designating a specific team for cybersecurity can help monitor any signs of suspicious activity.

Yahoo

Yahoo experienced one of the largest hacking incidents in history, affecting 3 billion user accounts. Yahoo did not realize the severity of this breach, causing the settlement to be $117.5 million. Yahoo offers services like Yahoo Mail, Yahoo Finance, Yahoo Fantasy Sports, and Flickr which were all affected by this breach.

This one-click data breach occurred when a Canadian hacker worked with Russian spies to hack Yahoo’s use of cookies and access important personal data. These hackers could obtain usernames, email addresses, phone numbers, birthdates, and user passwords, all of which are personally identifiable information (PII) and more than enough for a hacker to take over people’s lives. An extensive breach like Yahoo raises concern for its users regarding data privacy and the cybersecurity of their information.

Verizon

From September 2023 to December 2023, Verizon experienced a breach within its workplace. This breach occurred when an employee compromised personal data from 63,000 colleagues. Verizon described this issue as an “insider wrongdoing”. Names, addresses, and social security numbers were exposed but were not used or shared. Verizon resolved this breach by allowing affected employees to get two years of protection on their information and up to $1 million for stolen funds/ expenses.

While this information was not used or extended to customer information, companies need to educate their workplace on precautions for data privacy. If individuals hear that the inner circle is leaking personal information about their colleagues, it raises concern for customers.

 Equifax

Equifax, a credit reporting agency, experienced a data breach in 2017 that affected roughly 147 million consumers. Investigators emphasized the security failures that allowed hackers to get in and navigate through different servers. These hackers gained access to social security numbers, birth dates, home addresses, credit card information, and their driver’s license information.

This failed security check from an Equifax employee caused easy access for these hackers in multiple spots. Taking the extra time to ensure your company has secured loose ties is crucial for reducing attacks.

Conclusion

Data breaches occur no matter a company’s size or industry, but the risks can be reduced with secure and consistent precautions. Data breaches are common, especially with the extended use of cloud platforms and SaaS, but failing to store and transport information among services, to have a documented chain of custody, and data decommissioning process in place all play a role in having your sensitive information being accessed by the wrong kinds of people.

At SEM, we offer a variety of in-house solutions designed to destroy any personal information that is out there. Our IT Solutions, specifically our NSA-listed Degausser,  SEM Model- EMP1000- HS stands as the premier degausser in the market today. This degausser offers destruction with one click, destroying the binary magnetic field that stores your end-of-life data. SaaS companies can feel secure knowing their data is destroyed by an NSA-approved government data destruction model. While an NSA-listed destruction solution isn’t always necessary for SaaS companies, it is secure enough for the US Government, so we can assure you it’s secure enough to protect your end-of-life data, too.

Whether your data is government-level or commercial, it is important to ensure data security, which is where SEM wants to help. There is an option for everyone at SEM, with a variety of NSA-listed degaussers, IT crushers, and IT shredders to protect your end-of-life data. Further your security measures today by finding out which data solutions work best for you.

Data Centers: Every Square Foot Counts

November 15, 2023 at 1:30 pm by Amanda Canale

In the vast and complex world of data centers, the maximization of space is not just a matter of practicality; it is a crucial aspect that has the power to directly affect a facility’s efficiency, sustainability, flow of operations, and, frankly, financial standing.

Today, information isn’t just power, but rather it serves as the lifeblood for countless industries and systems, making data centers stand as the literal bodyguards of this priceless resource. With the ever-expanding volume of data being generated, stored, and processed, the effective use of space within these centers has become more critical than ever.

In layman’s terms, every square foot of a data center holds tremendous value and significance.

Now, we’re not here to focus on how you can maximize the physical space of your data center; we’re not experts in which types of high-density server racks will allow you more floor space or which HVAC unit will optimize airflow.

What we are going to focus on is our expertise in high-security data destruction, an aspect of data center infrastructure that holds an equal amount of value and significance. We’re also going to focus on the right questions you should be asking when selecting destruction solutions. After all, size and space requirements mixed with compliance regulations are aspects of a physical space that need to be addressed when choosing the right solution.

So, we are posing the question, “When every square foot counts, does an in-house destruction machine make sense?”

Let’s find out.

Data Center IT Specialist and System administrator Talk, Use Tablet Computer, Wearing Safety Wests. Server Clod Farm with Two Information Technology Engineers checking Cyber Security.

The Important Questions

Let’s start off with the basic questions you need to answer before purchasing any sort of in-house data destruction devices.

What are your specific destruction needs (volume, media type, compliance regulations, etc.) and at what frequency will you be performing destruction? 

The first step in determining if an in-house destruction solution is the right move for your facility is assessing your volume, the types of data that need to be destroyed, and whether you will be decommissioning on a regular basis. Are you only going to be destroying hard drives? Maybe just solid state media? What about both? Will destruction take place every day, every month, or once a quarter?

It’s important to also consider factors such as the sensitivity of the data and any industry-specific regulations that dictate the level of security required. Additionally, a high volume of data decommissioning might justify the investment in in-house equipment, while lower-volume needs might require a different kind of solution.

How much physical space can you allocate for in-house equipment?

By evaluating the available square footage in a data center, facility management can ensure that the space allocated for the data destruction equipment is not only sufficient for the machinery but will also allow for efficient workflow and compliance with safety regulations. The dimensions for all of our solutions can be found on our website within their respective product pages.

What is your budget for destruction solutions?

Determining budget constraints for acquiring and maintaining in-house data destruction equipment will allow you to consider not only the upfront costs but also ongoing expenses such as maintenance, training, and potential upgrades. It’s important to note that, in addition to evaluating your budget for ­in-house equipment, the comparison between an in-house solution and cost of a data breach should also be taken into consideration.

All of the answers to these questions will help determine the type of solution (shredder, crusher, disintegrator, etc.), the compliance regulation it should meet (HIPAA, NSA, NIST, etc.), the physical size, and if there should be any custom specifications that should be implemented. 

Warning icon on a digital LCD display with reflection. Concept of cyber attack, malware, ransomware, data breach, system hacking, virus, spyware, compromised information and urgent attention.

Data Breaches: A Recipe for Financial Catastrophes

One of the primary reasons why every square foot counts within data centers is the financial element. Building and maintaining data center infrastructures often come with significant expenses, ranging from real estate and construction to cooling, power supply, and hardware installations, just for starters. It’s important to ensure that you are maximizing both your physical space and your budget to get the most bang for your buck.

But even beyond the physical constraints and considerations, the financial implications can loom overhead, especially in the context of data security.

Data breaches represent not just a threat to digital security but also a financial consequence that can reverberate for years. The fallout from a breach extends far beyond immediate remediation costs, encompassing regulatory fines, legal fees, public relations efforts to salvage a damaged reputation, and the intangible loss of customer trust.

For example, from January to June 2019, there were more than 3,800 publicly disclosed data breaches that resulted in 4.1 billion records being compromised. And according to the IBM and Ponemon Institute report, the cost of an average data breach in 2023 is $4.45 million, a 15% increase over the past three years.

So, while, yes, you want to make sure you are making the best use out of your budget to bring in the necessary equipment and storage capability to truly use up every square foot of space, part of that budget consideration should also include secure in-house solutions. 

You’re probably saying to yourself, “As long as I can outsource my destruction obligations, I can maximize my physical space with said necessary equipment.”

You’re not wrong.

But you’re not necessarily right, either.

The Hidden Costs of Outsourced Data Destruction

Outsourcing data destruction has traditionally been a common practice, with the aim of offloading the burden of secure information disposal. However, as we’ve stated in previous blogs, introducing third party data sanitization vendors into your end-of-life decommissioning procedures can gravely increase the chain of custody, resulting in a far higher risk of data breaches.

Third-party service contracts, transportation costs, and potential delays in data destruction contribute to an ongoing financial outflow. More so, the lack of immediate control raises concerns about the security of sensitive information during transit. For example, in July 2020, the financial institution Morgan Stanley came under fire for an alleged data breach of their clients’ financial information after an IT asset disposition (ITAD) vendor misplaced various pieces of computer equipment that had been storing customers’ sensitive personally identifiable information (PII).

While ITADs certainly have their role within the data decommissioning world, as facilities accumulate more data, and as the financial stakes continue to rise, the need to control the complete chain of custody (including in-house decommissioning) becomes more and more crucial. 

In-House Data Destruction: A Strategic Financial Investment 

Now that your questions have been answered and your research has been conducted, it’s time to (officially) enter the realm of in-house data destruction solutions – an investment that not only addresses security concerns but aligns with the imperative to make every square foot count. 

It’s crucial that we reiterate that while the upfront costs associated with implementing an in-house destruction machine may appear significant, they must be viewed through the lens of long-term cost efficiency and risk mitigation. 

In the battle against data breaches, time is truly of the essence. In-house data destruction solutions provide immediate control over the process, reducing the risk of security breaches during transportation and ensuring a swift response to data disposal needs. This agility becomes an invaluable asset in an era where the threat landscape is continually evolving. In-house data destruction emerges not only as a means of maximizing space but as a financial imperative, offering a proactive stance against the potentially catastrophic financial repercussions of data breaches. 

Whether your journey leads you to a Model 0101 Automatic Hard Drive Crusher or a DC-S1-3 HDD/SSD Combo Shredder, comparing the costs of these solutions (and their average lifespan) to a potential data breach resulting in millions of dollars, makes your answer that much simpler: by purchasing in-house end-of-life data destruction equipment, your facility is making the most cost-effective, safest, and securest decision.

The Hidden Heroes: Environmental Solutions for Data Centers

October 30, 2023 at 3:31 pm by Amanda Canale

Behind the scenes of our increasingly interconnected world, lie the hidden heroes of today’s data centers — environmental controls.  

Data centers must be equipped with a multitude of environmental controls, ranging from electricity monitoring and thermal control to air flow and quality control and fire and leak suppression, all of which play pivotal roles in maintaining an optimal environment for data centers to operate effectively and sufficiently.

Embracing compliance regulations and standards aimed at reducing energy consumption and promoting sustainability is an essential step towards a data center’s greener future (not to mention a step towards a greener planet).

Electricity Monitoring

It’s a no-brainer that the main component of a data center’s ability to operate is electricity. In fact, it’s at the center of, well, everything we do now in the digital age.

It is also no secret that data centers are notorious for their high energy consumption, so managing their electricity usage efficiently is essential in successfully maintaining their operations. Not to mention that any disruption to the supply of electricity can lead to catastrophic consequences, such as data loss and service downtime. With electricity monitoring, data centers can proactively track their consumption and identify any service irregularities in real time, allowing facilities to mitigate risk, reduce operational costs, extend the lifespan of their equipment, and guarantee uninterrupted service delivery.

The Role of Uptime Institute’s Tier Classification in Electrical Monitoring

The Uptime Institute’s Tier Classification and electricity monitoring in data centers are intrinsically linked as they both play pivotal roles in achieving optimal reliability and efficiency. The world-renowned Tier Classification system provides data centers with the framework for designing and evaluating their infrastructure based on four stringent tiers. Tier IV is the system’s most sophisticated tier, offering facilities 99.995% uptime per year, or less than or equal to 26.3 minutes of downtime annually.

Utilizing the Tier Classifications in their electricity monitoring efforts, data centers can fine-tune their power infrastructure for peak efficiency, reducing energy waste and operating costs along the way.

Read more about the vitality of the Uptime Institute’s Tier Classification in our recent blog, here.

Thermal and Humidity Control 

The temperature and humidity within a data center’s walls hold significant value in maintaining the operational efficiency, sustainability, and integrity of a data center’s IT infrastructure.  

Unfortunately, finding that sweet spot between excessive dryness and high moisture levels can be a bit tricky. 

According to the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), data centers should aim to operate between 18 – 27oC, or 64.4 – 80.6 oF; however, it’s important to note that this range is just a recommendation and there are currently no mandates or compliance regulations detailing a specific temperature.

Meanwhile, AVTECH Software, a private computer hardware and software developer company, suggest a data center environment should maintain ambient relative humidity within 45-55%, with a minimum humidity rate of 20%. 

Thankfully, due to the exponential rise in data centers over time, there are countless devices available to monitor both temperature and humidity levels.

Striking the right balance in thermal and humidity levels helps safeguard the equipment and maintain a reliable, stable, and secure data center environment. Efficient cooling systems help optimize energy consumption, reducing operational costs and environmental impact, whereas humidity controls prevent condensation, static electricity buildup, and electrostatic discharge, which can damage the more delicate components. 

Air Flow Management and Quality Control

Here’s a question for you: ever be working late on your laptop with a bunch of windows and programs open, and it starts to sound like it’s about to take off for space?

That means your laptop is overheating and is lacking proper airflow.

Air flow management and air quality control serve as two sides of the same coin: both contribute to equipment reliability, energy efficiency, and optimal health and safety for operators.

Air Flow Management 

Regardless of their scale, when data centers lack proper airflow management, they can easily become susceptible to hotspots. Hotspots are areas within data centers and similar facilities that become excessively hot from inadequate cooling, ultimately leading to equipment overheating, potential failures, and, even worse, fires. Not only that, but inefficient air flow results in wasted energy and money and requires other cooling systems to work overtime.

By strategically arranging specially designed server racks, implementing hot and cold aisle containment systems, and installing raised flooring, data centers can ensure that cool air is efficiently delivered to all their server components while hot air is effectively pushed out. While meticulous and stringent, this level of management prolongs the lifespan of expensive hardware and gravely reduces energy consumption, resulting in significant cost savings and environmental benefits. 

Air Quality Control

Airborne contaminants, such as dust, pollen, and outside air pollution, can severely clog server components and obstruct airflow, leading to equipment overheating and failures and eventually other catastrophic consequences. Not to mention, chemical pollutants from cleaning supplies and other common contaminants such as ferrous metal particles from printers and various mechanical parts, concrete dust from unsealed concrete, and electrostatic dust all play a role in corroding sensitive and critical circuitry.

Air quality control systems, including advanced air filtration and purification technologies, help maintain a pristine environment by removing these airborne particles and contaminants. These additional systems allow facilities to extend their server and network equipment lifespans, operate at peak efficiency, and reduce the frequency of costly replacements and repairs, all while contributing to data center reliability and data security.

Fire Suppression 

The significance of fire suppression in data centers lies in the ability to quickly and effectively prevent and combat fires, ultimately minimizing damage and downtime. Due to the invaluable data, assets, and infrastructure within data centers, these suppression systems are designed to detect and put out fires in their earliest stages to prevent them from spreading and escalating. 

Data centers use a variety of cutting-edge technologies such as early warning smoke detection, heat sensors, water mist sprinkler systems, smoke and fire controlling curtains, and even clean agents like inert gases, which leave no residue, thus further safeguarding the integrity of the sensitive equipment.

Causes of Fires in Data Centers

Electrical failures are the most common cause for data center fires, and often stem from overloaded circuits, equipment malfunctions, and defective wiring. They can also be started by electrical surges and arc flashes, otherwise known as an electrical discharge that is ignited by low-impedance connections within the facility’s electrical system.

Lithium-ion Batteries have a high energy density and are typically placed near a facility’s servers to ensure server backup power in the case of a main power failure. However, lithium-ion batteries burn hotter than lead-acid batteries, meaning that if they overheat, their temperature can trigger a self-perpetuating reaction, further raising the batteries’ temperatures.

Insufficient maintenance such as failing to clean and repair key data center components, such as servers, power supplies, and cooling systems can quickly lead to dust and particle accumulation. Dust, particularly conductive dust, when allowed the time to build up on these components, can potentially cause short circuits and overheating, both which can lead to a fire.

Human error is inevitable and can play a large part in data center fires and data breaches, despite all of the advanced technologies and safety measures in place. These types of errors range from improper equipment handling, poor cable management, inadequate safety training, overloading power sources, and more.

 Leak Detection

Remember when we said that it is no secret that data centers are notorious for their high energy consumption? The same can be said for their water usage. 

On average, data centers in the U.S. use approximately 450 million gallons of water a day in order to generate electricity and to keep their facilities cool. Any kind of failure within a data center’s cooling system can lead to a coolant leak, which can further lead to catastrophic consequences, such as costly downtime, data loss, and irreparable damage to their expensive equipment. 

Leak detection systems’ role is of extreme importance in safeguarding data centers because they promptly identify and alert facility staff to any leaks that can cause water damage to critical servers, networking equipment, and other valuable assets. Raised floors also act as a protective barrier against potential water damage, for they keep sensitive equipment elevated above the floor, reducing the risk of damage and downtime.

The Role of SEM

Data centers operate in controlled environments and have state-of-the-art air quality and flow management systems to achieve equipment reliability, energy efficiency, and optimal health and safety for operators. This much we know.

What we also know is just how important in-house data decommissioning is to maintaining data security. In-house data decommissioning is the process of securely and ethically disposing of any data that is deemed “end-of-life,” allowing enterprises to keep better control over their data assets and mitigate breaches or unauthorized access. 

So, how does in-house data decommissioning play into a data center’s environmental controls?

Well, the process of physically destroying data, especially through techniques like shredding or crushing, can often release fine particle matter and dust into the air. This particle matter can potentially sneak its way into sensitive equipment, clog cooling systems, and degrade the facility’s overall air quality, like we discussed earlier.

At SEM, we have a wide range of data center solutions for the destruction of hard disk drives (HDDs) and solid state drives (SSDs) that are integrated with HEPA filtration, acting as a crucial barrier against airborne contaminants. HEPA filtration enhances air quality, improving operator and environmental health and safety.

Conclusion

Temperature and humidity control, air quality and airflow management, fire suppression, and leak detection all work together to create a reliable and efficient environment for data center equipment. Combined with stringent physical security measures, power and data backup regulations, compliance mandates, and proper documentation and training procedures, data center operators can ensure uninterrupted service and protect valuable data assets. 

As technology continues to evolve, the importance of these controls in data centers will only grow, making them a cornerstone of modern computing infrastructure.

Data Center Efficiency Starts with Proper Documentation and Training

October 12, 2023 at 8:00 am by Amanda Canale

At the rate at which today’s technology is constantly improving and developing, the importance of thorough, accurate documentation and training cannot be overstated. After all, data centers house and manage extremely critical infrastructure, hardware, software, and invaluable data, all of which require routine maintenance, overseeing, upgrading, configuration, and secure end-of-life destruction.

One way to view documentation in data centers is that it serves as the thread tying together all the diverse data and equipment that play a crucial role in sustaining these facilities: physical security, environmental controls, redundancies, documentation, training, and more.

Simply put, the overarching theme of proper documentation within data centers is that it provides clarity.

Clarity in knowing where every piece of equipment is located and what state it is in.

Clarity when analyzing existing infrastructure capacities.

Clarity on regulatory compliance during audits.

Clarity on, well, every aspect of a data center’s functionality, to be completely honest.

But, before we dive into the benefits of proper documentation, first things first: what does proper documentation look like?

  • Work instructions and configuration guides;
  • Support ticket logs to track issues, either from end-users or in-house;
  • Chain-of-custody and record of past chains-of-custody to know who is authorized to handle which assets and who manages or oversees equipment and specific areas;
  • Maintenance schedules;
  • Change management systems that track where each server is and how to access it;
  • And most importantly, data decommissioning process and procedures.

This is by no means an exhaustive list of all the necessary documentation data centers should retain, but these few items provide perfect examples of what kind of documentation is needed to keep facilities functioning efficiently. 

Now that you have a better idea of what kind of critical documentation should be maintained, let’s dive into the benefits (because that is, in fact, why you’re here reading this!).

Organization and Inventory Management

Documentation provides a clear and up-to-date picture of all the hardware, software, and infrastructure components within a data center. This includes servers, networking equipment, storage devices, and more. By maintaining accurate records of each component’s specifications, location within the facility, and status, data center managers and maintenance personnel can easily identify their available resources, track their usage, and plan for upgrades or replacements as needed.

Knowledge Preservation and Training Development

In any data center, knowledge is a priceless asset. Documenting configurations, network topologies, hardware specifications, decommissioning regulations, and other items mentioned above ensures that institutional knowledge is not lost when individuals leave the organization. (So, no need to panic once the facility veteran retires, as you’ll already have all the information they have!)

This information becomes crucial for staff, maintenance personnel, and external consultants to understand every facet of the systems quickly and accurately. It provides a more structured learning path, facilitates a deeper understanding of the data center’s infrastructure and operations, and allows facilities to keep up with critical technological advances.

By creating a well-documented environment, facilities can rest assured knowing that authorized personnel are adequately trained, and vital knowledge is not lost in the shuffle, contributing to overall operational efficiency and effectiveness, and further mitigating future risks or compliance violations. 

Knowledge is power, after all! 

Enhanced Troubleshooting and Risk Mitigation 

Understanding how to mitigate risks is fundamental to maintaining data center performance. In the event of an issue or failure (no matter how minor), time is of the essence. Whether it is a physical breach, an environmental disaster, equipment reaching end-of-life, or something entirely different, the quick-moving efforts due to proper documentation expedite the troubleshooting and risk mitigation process. This allows IT staff to identify the root cause of a problem and take appropriate corrective actions as soon as possible, ultimately minimizing downtime and ensuring that critical systems are restored promptly. 

Expansion and Scalability 

As we continue to accumulate more and more data, the need for expanding and upgrading data centers also continues to grow. Proper documentation provides the proper training and skills to plan and execute expansions (whether it’s adding new hardware, optimizing software, reconfiguring networks, or installing in-house data decommissioning equipment), insights into existing capacities, potential areas for growth, and all other necessary upgrades. This kind of foresight is invaluable for efficient scalability and futureproofing. Additionally, trained personnel can adapt to these evolving requirements with confidence and ease, boosting morale and efficiency.

Regulatory Compliance Mandates

In today’s highly regulated climate, data centers are subject to a myriad of industry-specific and government-imposed regulations, such as GDPR, HIPAA, PCI DSS, NSA, and FedRAMP (just to name a few). These regulations demand stringent data protection, security, and destruction measures, making meticulous documentation a core component of complying to these standards.

By documenting data center policies, procedures, security controls, and equipment destruction, data centers can provide a clear trail of accountability. This paper trail helps data center operators track and prove compliance regulations by showcasing the steps taken to safeguard sensitive data and maintain the integrity of operations—both while in-use and end-of-life. Not to mention, a properly documented accountability trail can simplify audits and routine inspections, allowing comprehensive documentation to serve as tangible evidence that the necessary safeguards and protocols are in place.

And as we covered earlier in this blog, documentation aids in risk mitigation, offering a proactive approach to allow facilities to rectify issues before they become compliance violations, thereby reducing legal and financial risks associated with non-compliance.

Furthermore, documentation ensures transparency and accountability within an organization, fostering a culture of compliance awareness among data center staff and encouraging best practices. When everyone understands their role in maintaining compliance and can reference documented procedures, the likelihood of unexpected errors or violations decreases significantly.

Data Decommissioning Documentation and the Role of SEM

Documentation provides a comprehensive record of not only the equipment’s history, but includes its configuration, usage, and any sensitive data it may have housed. Now, as mentioned above, depending on the type of information that was stored, it falls subject to specific industry-specific and government-imposed regulations, and the decommissioning process is no different.

When any data center equipment reaches the end of its operational life, proper documentation plays a crucial role in ensuring the secure and compliant disposal of these assets. This documentation is essential for verifying that all necessary data destruction procedures have been followed in accordance with regulatory requirements and industry best practices, allowing for transparency and accountability throughout the entire end-of-life equipment management process and reducing the risk of data breaches, legal liabilities, and regulatory non-compliance. 

At SEM, our mission is to provide facilities, organizations, and data centers the necessary high security solutions to conduct their data decommissioning processes in-house, allowing them to keep better control over their data assets and mitigate breaches or unauthorized access. We have a wide range of data center solutions designed to swiftly and securely destroy any and all sensitive information your data center is storing, including the SEM iWitness Media Tracking System and the Model DC-S1-3. 

The iWitness tool was created to document the data’s chain of custody and a slew of crucial details during the decommissioning process, including date and time, destruction method, serial and model number, operator, and more, all easily exported into one CSV file.

The DC-S1-3 is a powerhouse. This robust system was specifically designed for data centers to destroy enterprise rotational/magnetic drives and solid state drives. This state-of-the-art solution is available in three configurations: HDD, SSD, and a HDD/SSD Combo, and uses specially designed saw tooth hook cutters to shred those end-of-life rotational hard drives to a consistent 1.5″ particle size. The DC-S1-3 series is ideal for the shredding of HDDs, SSDs, data tapes, cell phones, smartphones, optical media, PCBs, and other related electronic storage media.  

These solutions are just three small examples of our engineering capabilities. With the help of our team of expert engineers and technicians, SEM has the capability and capacity to custom build more complex destruction solutions and vision tracking systems depending on your volume, industry, and compliance regulation. Our custom-made vision systems are able to fully track every step of the decommissioning process of each and every end-of-life drive, allowing facilities to have a detailed track record of the drive’s life. For more information on our custom solutions, visit our website here.

Conclusion

In conclusion, the significance of proper documentation and training cannot be overstated. These two pillars form the foundation upon which the efficiency, reliability, and security of a data center are built.

Proper documentation ensures that critical information about the data center’s infrastructure, configurations, and procedures is readily accessible, maintained, and always up-to-date. Documentation aids in organization and inventory management, knowledge preservation, troubleshooting, and compliance, thereby minimizing downtime, reducing risks, and supporting the overall operational performance of the data center.

In the same vein, comprehensive training for data center personnel is essential for harnessing a facility’s full potential. It empowers staff with the knowledge and skills needed to operate, maintain, and adapt to the evolving demands of a data center, giving them the power and confidence to proactively address issues, optimize performance, and contribute to the data center’s strategic objectives.

As technology continues to advance and data centers become increasingly critical to businesses, investment in proper documentation and training remains an indispensable strategy for ensuring a data center’s continued success and resilience in an ever-changing digital world.

The Critical Imperative of Data Center Physical Security

September 12, 2023 at 8:00 am by Amanda Canale

In our data-driven world, data centers serve as the backbone of the digital revolution. They house an immense amount of sensitive information critical to organizations, ranging from financial records to personal data. Ensuring the physical security of data centers is of paramount importance. After all, a data center’s physical property is the first level of security. By meeting the ever-evolving security mandates and controlling access to the premises, while maintaining and documenting a chain of custody during data decommissioning, data centers ensure that only authorized personnel have the privilege to interact with and access systems and their sensitive information.

Levels of Security Within Data Centers

Before any discussion on physical security best practices for data centers can begin, it’s important to think of data center security as a multi-layered endeavor, with each level meticulously designed to strengthen the protection of data against potential breaches and unauthorized access. 

Data centers with multi-level security measures, like Google and their six levels of data center security, represent the pinnacle of data infrastructure sophistication. These facilities are designed to provide an exceptional level of reliability and high security, offering the utmost advances in modern day security, ensuring data remains available, secure, and accessible. 

Below we have briefly broken down each security level to offer an inside peek at Google’s advanced security levels and best practices, as they serve as a great framework for data centers. 

  • Level 1: Physical property surrounding the facility, including gates, fences, and other more significant forms of defenses.
  • Level 2: Secure perimeter, complete with 24/7 security staff, smart fencing, surveillance cameras, and other perimeter defense systems.
  • Level 3: Data center entry is only accessible with a combination of company-issued ID badges, iris and facial scans, and other identification-confirming methods.
  • Level 4: The security operations center (SOC) houses the facility’s entire surveillance and monitoring systems and is typically managed by a select group of security personnel.
  • Level 5: The data center floor only allows access to a small percentage of facility staff, typically made up solely of engineers and technicians.
  • Level 6: Secure, in-house data destruction happens in the final level and serves as the end-of-life data’s final stop in its chain of custody. In this level, there is typically a secure two-way access system to ensure all end-of-life data is properly destroyed, does not leave the facility, and is only handled by staff with the highest level of clearance.

As technology continues to advance, we can expect data centers to evolve further, setting new, intricate, and more secure standards for data management in the digital age.

Now that you have this general overview of best practices, let’s dive deeper.

Key Elements of Data Center Physical Security

Effective data center physical security involves a combination of policies, procedures, and technologies. Let’s focus on five main elements today:

  • Physical barriers
  • Surveillance and monitoring
  • Access controls and visitor management
  • Environmental controls
  • Secure in-house data decommissioning
Physical Barriers

Regardless of the type of data center and industry, the first level of security is the physical property boundaries surrounding the facility. These property boundaries can range widely but typically include a cocktail of signage, fencing, reinforced doors, walls, and other significant forms of perimeter defenses that are meant to deter, discourage, or delay any unauthorized entry.  

Physical security within data centers is not a mere addendum to cybersecurity; it is an integral component in ensuring the continued operation, reputation, and success of the organizations that rely on your data center to safeguard their most valuable assets.

Surveillance and Monitoring

Data centers store vast amounts of sensitive information, making them prime targets for cybercriminals and physical intruders. Surveillance and monitoring systems are the vigilant watchdogs of data centers and act as a critical line of defense against unauthorized access. High-definition surveillance and CCTV cameras, alarm systems, and motion detectors work in harmony to help deter potential threats and provide real-time alerts, enabling prompt action to mitigate security breaches.

Access Controls and Visitor Management

Not all entrants are employees or authorized visitors. Access controls go hand-in-hand with surveillance and monitoring; both methods ensure that only authorized personnel can enter the facility. Control methods include biometric authentication, key cards, PINs, and other secure methods that help verify the identity of individuals seeking entry. These controls, paired with visitor management systems, allow facilities to control who may enter the facility, and allows staff to maintain logs and escort policies to track the movements of guests and service personnel. These efforts minimize the risk of unauthorized access, and by preventing unauthorized access, access controls significantly reduce the risk of security breaches.

Under the umbrella of access controls and visitor management is another crucial step in ensuring that only authorized persons have access to the data: assigning and maintaining a chain of custody. 

But what exactly is a chain of custody?

A chain of custody is a documented trail that meticulously records the handling, movement, and access, and activity to data. In the context of data centers, it refers to the tracking and documenting of data assets as they move within the facility, and throughout their lifecycle. A robust chain of custody ensures that data is always handled only by authorized personnel. Every interaction with the data, whether it’s during maintenance, migration, backup, or destruction, is documented. This transparency greatly reduces the risk of unauthorized access or tampering, enhancing overall data security and helps maintain data integrity, security, and compliance with regulations.

Environmental Controls

Within the walls of data centers, a crucial aspect of safeguarding your digital assets lies in environmental controls, so facilities must not only fend off human threats but environmental hazards, as well. As unpredictable as fires, floods, and extreme temperatures can be, data centers must implement robust environmental control systems as they are essential in preventing equipment damage and data loss. 

Environmental control systems include, but are not limited to:

  • Advanced fire suppression systems to extinguish fires quickly while minimizing damage to both equipment and data.
  • Uninterruptible power supplies (UPS) and generators ensure continuous operation even in the face of electrical disruptions.
  • Advanced air filtration and purification systems mitigate dust and contaminants that can harm your equipment, keeping your servers and equipment uncompromised. 
  • Leak detection systems are crucial for any data center. They are designed to identify even the smallest amount of leaks and trigger immediate responses to prevent further damage.

These systems are the unsung heroes, ensuring the optimal conditions for your data to (securely) thrive and seamlessly integrate with physical security measures.

In-House Data Decommissioning

While there’s often a strong emphasis on data collection and storage (rightfully so), an equally vital aspect in data center security is often overlooked—data decommissioning. In-house data decommissioning is the process of securely and responsibly disposing of any data considered “end-of-life,” ultimately empowers organizations to maintain better control over their data assets. Simply put, this translates to the physical destruction of any media that is deemed end-of-life by way of crushing for hard disk drives (HDDs), shredding for paper and solid state drives (SSDs), and more. 

When data is properly managed and disposed of, organizations can more effectively enforce data retention policies, ensuring that only relevant and up-to-date information is retained. This, in turn, leads to improved data governance and reduces the risk of unauthorized access to sensitive data.

In-house data decommissioning ensures that sensitive data is disposed of properly, reducing the risk of data leaks or breaches. It also helps organizations comply with data privacy regulations such as GDPR and HIPAA, which often require stringent secure data disposal practices.

Physical Security Compliance Regulations

We understand that not all compliance regulations are a one-size-fits-all solution for your data center’s security needs. However, the following regulations can still offer invaluable insights and a robust cybersecurity framework to follow, regardless of your specific industry or requirements. 

ISO 27001: Information Security Management System (ISMS)

ISO 27001 is an internationally recognized standard that encompasses a holistic approach to information security. This compliance regulation covers aspects such as physical security, personnel training, risk management, and incident response, ensuring a comprehensive security framework.

When it comes to physical security, ISO 27001 provides a roadmap for implementing stringent access controls, including role-based permissions, multi-factor authentication, and visitor management systems, and the implementation of surveillance systems, intrusion detection, and perimeter security. Combined, these controls help data centers ensure that only authorized personnel can enter the facility and access sensitive areas. 

Data centers that adopt ISO 27001 create a robust framework for identifying, assessing, and mitigating security risks. 

ISO 27002: Information Security, Cybersecurity, and Privacy Protection – Information Security Controls

ISO 27002 offers guidelines and best practices to help organizations establish, implement, maintain, and continually improve an information security management system, or ISMS. While ISO 27001 defines the requirements for an ISMS, ISO 27002 provides the practical controls for data centers and organizations to implement so various information security risks can be addressed. (It’s important to note that an organization can be certified in ISO 27001, but not in ISO 27002 as it simply serves as a guide. 

While ISO 27002’s focus is not solely on physical security, this comprehensive practice emphasizes the importance of conducting thorough risk assessments to identify vulnerabilities and potential threats in data centers, which can include physical threats just as much as cyber ones. Since data centers house sensitive hardware, software, and infrastructure, they are already a major target for breaches and attacks. ISO 27002 provides detailed guidelines for implementing physical security controls, including access restrictions, surveillance systems, perimeter security and vitality of biometric authentication, security badges, and restricted entry points, to prevent those attacks.

Conclusion

In an increasingly digital world where data is often considered the new currency, data centers serve as the fortresses that safeguard the invaluable assets of organizations. While we often associate data security with firewalls, encryption, and cyber threats, it’s imperative not to overlook the significance of physical security within these data fortresses. 

By assessing risks associated with physical security, environmental factors, and access controls, data center operators can take proactive measures to mitigate said risks. These measures greatly aid data centers in preventing unauthorized access, which can lead to data theft, service disruptions, and financial losses. Additionally, failing to meet compliance regulations can result in severe legal consequences and damage to an organization’s reputation.

In a perfect world, simply implementing iron-clad physical barriers and adhering to compliance regulations would completely eliminate the risk of data breaches. Unfortunately, that’s simply not the case. Both data center security and compliance encompass not only both cybersecurity and physical security, but secure data sanitization and destruction as well. The best way to achieve that level of security is with an in-house destruction plan. 

In-house data decommissioning allows organizations to implement and enforce customized security measures that align with their individual security policies and industry regulations. When data decommissioning is outsourced, there’s a risk that the third-party vendor may not handle the data with the same level of care and diligence as in-house teams would.

Throughout this blog, we’ve briefly mentioned that data centers should implement a chain of custody, especially during decommissioning. In-house data decommissioning and implementing a data chain of custody provide data centers the highest levels of control, customization, and security, making it the preferred choice for organizations that prioritize data protection, compliance, and risk mitigation. By keeping data decommissioning within their own control, organizations can ensure that their sensitive information is handled with the utmost care and security throughout its lifecycle.

At SEM, we have a wide range of data center solutions designed for you to securely destroy any and all sensitive information your data center is storing, including the SEM iWitness Media Tracking System and the Model DC-S1-3. 

The iWitness is a tool used in end-of-life data destruction to document the data’s chain of custody and a slew of crucial details during the decommissioning process. The hand-held device reports the drive’s serial number, model and manufacturer, the method of destruction and tool used, the name of the operator, date of destruction, and more, all easily exported into one CSV file. 

The DC-S1-3 is specifically designed for data centers to destroy enterprise rotational/magnetic drives and solid state drives. This state-of-the-art solution uses specially designed saw tooth hook cutters to shred those end-of-life rotational hard drives to a consistent 1.5″ particle size. This solution is available in three configurations: HDD, SSD, and a HDD/SSD Combo. The DC-S1-3 series is ideal for the shredding of HDDs, SSDs, data tapes, cell phones, smartphones, optical media, PCBs, and other related electronic storage media. 

The consequences of improper data destruction are endless, and statute of limitations don’t apply to data breaches. No matter what the industry, purchasing in-house, end-of-life data destruction equipment is well worth the investment. This can in turn potentially save your data center more time and money in the long run by preventing breaches early on.

Centralized vs. Decentralized Destruction: What’s the Difference?

April 17, 2023 at 2:36 pm by Amanda Canale

As with most new technology, ideas, and solutions, there are pros and cons. In this month’s blog, we’re breaking down the main similarities and differences between centralized and decentralized destruction environments.

Centralized Environment

A centralized environment is, essentially, one space where all of the magic happens. Whether it is a centralized record center or destruction environment, everything that happens and everything being stored are in one location. 

For example, let’s refer back to our Level 6 Data Centers: Best Practices in Security blog. The sixth level of the Google data center is known as a centralized destruction environment because all the destruction occurs in one, central space. At this level, security is at an all-time high, with very few personnel having access. 

 

 

Another example of a centralized environment, but in this case a record center, is a single space where all records are kept. It could be a doctor’s office where all patient files are kept or a cloud-based system where all files and documentation are stored. Since centralized environments hold a substantial amount of information, they are typically organized by separate teams or personnel with a very high level of clearance.

CENTRALIZED ENVIRONMENT PROS:

One main pro when it comes to a centralized environment, in this case destruction, is that all of your destruction occurs in one place. There isn’t a concern for whether a drive was left on someone’s desk or an end-of-life document was misfiled since there is a system in place that requires all end-of-life drives and documentation to be in one place at the same time. This allows for a highly organized destruction plan and seamless organization system.

With a centralized environment typically comes extra security (remember, all your eggs are in one basket!), which just adds an additional level of protection. This can be in the form of more security cameras, keypads and ID badges, physical security guards, and more. Not only do centralized environments come more protected, they also allow for more opportunities for control.

CENTRALIZED ENVIRONMENT CONS:

By putting one’s eggs all in one basket, while it offers a sense of control and safety, it can also have its drawbacks. Hypothetically speaking, if someone was able to breach that centralized location, they have the world at their fingertips since everything is in one place. Servers can be hacked into, destruction solutions can be tampered with, and precious information can easily be stolen. However, this is also why extra security measures are taken, whether the environment is centralized or not.

Decentralized Environment

On the contrary, a decentralized environment is where all of the records or destruction occurs across multiple rooms, spaces, or even floors. A decentralized environment could be the same doctor’s office mentioned earlier, but where patient personal health information (PHI) is kept spread out among various storage locations, workstations, multiple servers, etc. 

DECENTRALIZED ENVIRONMENT PROS:

Decentralized environments allow for data to be stored in more than one place offering more accessibility, and allowing those who need to access the data to be closer to it. By having their data in multiple and closer locations, there’s no need for long walks across the data center or building, or extra physical layers of security.

Depending on how sensitive the information is, a decentralized record center can sometimes offer more protection since there are multiple points of access and entry, which mean more opportunities for a hacker to fail.

DECENTRALIZED ENVIRONMENT CONS:

With multiple points of entry and access, also come…more money. Decentralized networks, destruction, or record environments require more upkeep, more maintenance, more storage, and more security. 

 

The consequences of improper data destruction are endless. By opting for in-house, centralized destruction, companies have complete oversight and can be certain that your information has been securely destroyed.  At SEM, we offer an array of various high-quality NSA listed/CUI and unclassified data destruction solutions, and are experts in designing and creating, implementing, installing, and servicing centralized destruction facilities across the globe. Whether it’s for the federal government, one of their agencies, or a commercial data center, we do it all. Learn more about our scalable and customizable solutions here. 

SEM Introduces NSA EPL Listed High Security Solid State Disintegrator

January 24, 2023 at 8:00 am by Amanda Canale

Security Engineered Machinery Co., Inc. (SEM), global leader in high security information end-of-life solutions, is pleased to announce that its new Model SSD2-HS high security solid state disintegrator meets the requirements of NSA/CSS 9-12 Storage Device Declassification Policy Manual. This revolutionary device is now listed on the NSA/CSS EPL and was specifically designed for the destruction of classified and highly sensitive solid state media and devices, producing an NSA mandated 2mm squared final particle size. 

“The SEM Model SSD2-HS is an exciting new addition to our long line of disintegrator devices and fills a large void within the intelligence community when it comes to classified SSD destruction,” commented Todd Busic, SEM Vice President of Sales. “This NSA listed device incorporates technologies to mitigate jams and increase operator health and safety via HEPA filters, making the SSD2-HS an industry first.”

The NSA states that in order for a solid state disintegrator to be NSA/CSS listed, it must be able to “reduce any solid state storage device to a maximum edge size of 2 millimeter or less” (NSA.Gov), making the SEM Model SSD2-HS a viable option for the destruction of end-of-life classified solid state material.

The Model SSD2-HS disintegrator has the power to cut through multiple steel plates, carriers, and other drives. The model’s dual stage cutting system features an auto unjam in both stages, robust safety features, and premium sound proofing. Together, the model’s dual stage cutting system combined with the solid steel rotor and cutting blades efficiently destroy multiple SSD-type devices.  

“The Model SSD2-HS is a state-of-the-art, clean, and revolutionary device that ensures the secure end-of-life destruction of any and all solid state devices,” commented Andrew Kelleher, SEM President and CEO. “Our engineers have been working tirelessly on this product and the device performance reflects that. Whether it’s laptop boards, thumb drives, or other memory modules, this machine can destroy it.”

In addition to powerful steel rotors, the device is equipped with premium sound dampening insulation, a waste evacuation system with high efficiency particulate filtration and external vacuum, and other features to ensure optimal operator and environmental health and safety.

“SEM has long been an innovator of high security information destruction technology and the new SSD2-HS continues that tradition of excellence,” noted Busic.

For more information on the Model SSD2-HS, visit https://www.semshred.com/explore-model-ssd2-hs/. 

Security Engineered Machinery Gives Back to Veteran Family with Operation Playhouse

March 7, 2022 at 7:25 pm by Amanda Canale

WESTBOROUGH, MA, February 23, 2022 – Security Engineered Machinery Co., Inc. (SEM), global leader in high security information end-of-life solutions, once again partnered with Metrowest Habitat for Humanity for Operation Playhouse. The operation allows the opportunity for local Worcester County businesses to partner with veteran and military families to build and donate a playhouse to the family’s children. Each year, participating local businesses receive construction plans, paint, and a deconstructed house to build, and are given free rein to decorate the playhouses based on the children’s interests.

The SEM team decorated the playhouse for U.S. Army veteran Sgt. Christopher Cutliffe’s family. Sgt. Cutliffe served in the U.S. Army from 1998 to 2006 with a 2003 tour in Afghanistan during Operation Enduring Freedom. 

“SEM was founded by a Korean War veteran in 1967, and ever since then we have worked very closely with all branches of the military and intelligence community, so any opportunity we have to give back, we take it,” said Andrew Kelleher, SEM President. “This cause has always been so close to our hearts, and it is always an absolute honor to come together and give back to a family that has given so much to our country.”

SEM Marketing Assistant, Amanda Canale, and Customer Care Representative, Cindy Haskell, painting the playhouse’s window frames.

SEM Director of Marketing, Heidi White (left), and Marketing Assistant, Amanda Canale (right) intertwining ivy garland into the playhouse’s porch.

The SEM team took full creative control with Operation Playhouse 2022 and produced a jungle-themed playhouse for the Cutliffe family’s two small children. The playhouse, painted dark green, is adorned with bamboo, greenery, jungle-themed activity books and toys, a removable front porch with gate, and even a rope swing with jungle vines. 

“Every year, we try to take creative liberty and produce a truly unique and special playhouse,” said Amanda Canale, SEM Marketing Assistant. “Our team really outdid themselves with this year’s concept. It’s by far the most creative we have been and it was incredibly heartwarming to see it received so lovingly by the Cutliffe family.”

Members of the SEM Sales, Engineering, and Service teams working together to construct the playhouse’s roof.

 

SEM Director of Marketing, Heidi White, presenting Sgt. Christopher Cutliffe and his family with a certificate and the playhouse.

 

This is SEM’s fourth year taking part in Operation Playhouse and certainly won’t be the last. “Operation Playhouse has become a tradition here at SEM and we are eagerly awaiting next year’s opportunity,” added Kelleher.

Watch a recap of the day in the video below.

About Habitat For Humanity

Habitat for Humanity is a global nonprofit housing organization working in local communities across all 50 states in the U.S. and in approximately 70 countries. Habitat’s vision is of a world where everyone has a decent place to live.

SEM Introduces New Line of Shredders for Commercial Data Center Market

September 1, 2021 at 9:00 am by Amanda Canale

Security Engineered Machinery Co., Inc. (SEM), global leader in high security information end-of-life solutions, is pleased to introduce a new line of hard drive and solid state shredder models: the SEM Model DC-S1-3 Series. This unique series of devices are specifically designed for the destruction of enterprise rotational hard drives and solid state media, such as those found in data centers. 

Designed at SEM’s Westborough, MA headquarters, the DC-S1-3 Series includes three models: the DC-S1-3 HDD for rotational hard drives, DC-S1-3 SSD for solid state drives, and DC-S1-3 HDD/SSD Combo for HDDs and SSDs. All are made in the USA and TAA compliant. 

“The DC-S1-3 series is an exciting new addition to our already extensive line of data destruction devices that was designed as a result of feedback gathered over the years from our data center clients,” commented Nicholas Cakounes, SEM CTO. “In addition to robust health and safety features, the DC-S1-3 incorporates very high torque and solid steel cutting heads to easily destroy the toughest, most dense hard drives and devices.”

The S1-3 series of devices are designed with a 3HP motor, high torque, and 3-phase power, ensuring the machines’ longevity and consistency. The S1-3 HDD and SSD both come with a single feed opening while the S1-3 HDD/SSD combo unit includes two separate feed openings and cutting chambers, one for rotational, platter-based hard drives and the other for solid state hard drives and devices. 

“Our new DC-S1-3 Series fills a gap for our data center clients when it comes to end-of-life hard drive destruction,” said Ben Figueroa, SEM Strategic Account Manager. “These devices not only offer consistent and efficient drive destruction, but also feature a compact footprint, which is so critical to our data center clients.”

In addition to rotational and solid state hard drives, the DC-S1-3 Series is ideal for the shredding of data tapes, cell phones, smartphones, optical media, memory sticks, thumb drives, PCBs, and other related electronic storage media.

For more information on the DC-S1-3 series, visit https://www.semshred.com/product/model-dc-s1-3-hdd-ssd/ and watch our YouTube video.

Level 6 Data Centers: Best Practices in Security

September 22, 2020 at 9:00 am by Amanda Canale

Over time, data center infrastructures have evolved from mainframes to cloud applications and can now take on various forms. The type of data center depends on the facility’s primary functions, how it is supported, and size. Based on these criteria, there are four main types of data centers: enterprise data centers, managed services data centers, colocation data centers, and cloud data centers. In addition to storing, managing, and circulating data, data centers also manage physical security systems, network and IT systems, power resources, environmental control, and performance and operational management.

Depending on the size and function of the data centers, some companies are known to have multiple centers in various locations that can store different data or serve as a centralized backup site. This helps to prevent the data from being destroyed due to natural or man-made disasters or in the instance of an outage. There are several levels to data center security, the highest level being Level 6. SEM devices are often part of a robust Level 6 data security program, as seen in this Google data center video.

Natural disasters aside, Level 6 data centers offer the utmost advances in modern data security to ensure that none of the data they store and manage gets into the wrong hands. Below we have broken down each security level within a Level 6 data center and offer an inside peek at just how difficult they can be to hack.

Level 1
Regardless of the kind of data center, the first level of security is the physical property boundaries surrounding the facility. These property boundaries typically include signage, fencing, and other significant forms of perimeter defenses.

Level 2
Once the physical property boundaries have been bypassed, the next level of security is a secure perimeter. Here, someone can enter through the main entrance gate and be met by 24/7 security guard staff, comprehensive camera coverage, smart fencing, and other perimeter defense systems. Once someone has entered the second level, the company’s security personnel have eyes on their every move.

Level 3
Level 3 finally allows physical entry to the data center…well, kind of. Even though someone may have been granted building access, they are still nowhere near the data center floor. This level requires a security search of each individual entering the data center. Employees entering the facility must provide a company-issued identification badge and be subjected to an iris or facial scan to confirm identity. In addition, most data centers only allow one person to badge in through doors at a time. All of these combined layers are to ensure that only approved personnel may enter.

Level 4
Level 4 houses the security operations center (SOC). The SOC is often referred to as the brains of the security system as it monitors the data center 24 hours a day, seven days a week, 365 days a year.  All of the previous layers of security discussed above (from camera footage, ID readings, to iris scans) are connected to the SOC and monitored by a select group of security personnel. Think of this level also as the eyes and ears of the facility.

Level 5
Level 5 is the data center floor – finally! This is where all of the company’s data and information is stored. When at this level, security is much stricter when it comes to access and only a small percentage of staff members have access to this level; typically, only the technicians and engineers so they can repair, maintain, or upgrade equipment. Even when on the data center floor, technicians and engineers only have access to the devices, but not the data itself, as all of the stored data is encrypted (another layer of security!).

Level 6
This is where all of the fun happens. And by fun, we mean data destruction. Security at this level is at an all-time high with even fewer personnel having access. It is at this level where end-of-life of all storage media happens. If a device needs to be destroyed, there is usually some sort of secure two-way access system in place, which can vary depending on the facility. This means that one person drops off the device to a locker or room and another person takes the device away to be destroyed. This step is crucial to maintaining data security protocols so only technicians assigned to the destruction room have access to the devices. It is the role of the technicians in this room to scan, degauss (magnetic media only), and destroy the retired devices.

Leaving the data center is a process just as intensive and secure as entering. Every person leaving the data center floor is subjected to a full-body metal detector and makes his or her way back through each of the previous levels. This is to ensure that no one is able to leave with any devices and each person that has entered can be accounted for when leaving.

In the destruction phase, it is NSA best practice to first degauss the device if it is magnetic media. This practice offers companies the most secure method of sanitization. SEM degaussers use powerful magnetic fields that sanitize magnetic tapes and magnetic hard disk drives. It is this act alone that renders the drive completely inoperable – which is always the goal. Not even the most skilled of hackers will be able to get any information off of the drive, simply because there’s nothing left on it to hack!

The next step is the physical destruction of the drive or device. This can be done by act of crushing and/or shredding. Combined, degaussing and destroying ensure that no information is susceptible to getting stolen and offer the best security in the destruction of your end-of-life data.

One of the most common data destruction misconceptions is that erasing or overwriting a drive and degaussing are the same thing. They’re not. Erasing data isn’t completely foolproof as it’s possible that trace amounts of encrypted and unencrypted data can still get left behind. This becomes a gold mine for hackers and thieves, who then have complete freedom to do whatever they want with your most sensitive and classified information. But remember, degaussing is only effective for magnetic media, such as rotational hard disk drives (HDDs). Deguassing is completely ineffective on solid state drives (SSDs) and optical media; therefore, physical destruction (crushing or shredding) to a very small particle size is best practice for these devices.

Regardless of the type and size of data center, implementing security layers like the ones listed above and destroying end-of-life data in-house are always best practice. By doing so, companies can be confident that their data has been successfully destroyed. Some companies make the mistake of opting for a third-party data sanitization vendor. When going the third-party route, individuals and companies forfeit any and all oversight, which leaves plenty of room for drives to be stolen, misplaced, and mishandled. It is this level of negligence, whether at the hand of the company or vendor, that can cause catastrophic damages to the company, its brand, and its customers.

Hackers do not discriminate. So regardless of the industry, purchasing in-house, end-of-life data destruction equipment is well worth the investment simply because it is impossible to be certain that all data has been destroyed otherwise. This can in turn potentially save the company more time and money in the long run by preventing breach early on.

At SEM we have an array of various high-quality NSA listed/CUI and unclassified magnetic media degaussers, IT crushers, and enterprise IT shredders to meet any regulation – including Level 6! Any one of our exceptional sales team members are more than happy to help answer any questions you may have and help determine which machine will best meet your company or federally regulated destruction needs.